Age-Related Changes of 14-3-3 Isoforms in Midbrain of A53T-SNCA Overexpressing Mice.


BACKGROUND Parkinson's disease (PD) is characterized by loss of midbrain dopaminergic neurons, which are affected by cytoplasmic inclusions, named Lewy pathology. The main component is alpha-synuclein (SNCA), a protein modulating SNARE-complex dependent neurotransmission. SNCA mutations trigger dominantly inherited PD variants and sporadic cases of PD via aggregation and transmission. SNCA and isoforms of the 14-3-3 family show sequence homology, protein interaction and joint aggregation, so 14-3-3 s may be key molecules of pathogenesis. OBJECTIVE We aimed to identify the relevant isoforms in midbrain and to distinguish for the first time the changes that occur very early versus those that progress with pathology. METHODS We assessed expression of the 14-3-3 family with quantitative RT-PCR and immunoblots of differential solubility fractions in mice with A53T-SNCA overexpression longitudinally at different ages. RESULTS Transcript levels showed reductions at age 3 months with increases at later ages for the beta, eta and zeta isoforms. Protein levels at age 3 months exhibited a concordant reduction only for beta, while increased insolubility was observed for epsilon and zeta. At age 18 months only the reduction of 14-3-3 beta protein remained significant. Thus, the toxic gain-of-function of alpha-synuclein leads to early transitory alterations of several 14-3-3 isoforms. When the levels of soluble 14-3-3 proteins become apparently normal during later life, increasing amounts of beta, eta and zeta mRNA are produced, possibly to compensate for protein insolubility and aggregation in a SNCA/14-3-3 complex. CONCLUSIONS These data may contribute to identify key molecular events that reflect Parkinson's disease risk and progression.


0 Figures and Tables

    Download Full PDF Version (Non-Commercial Use)